
Exploiting symmetries and progressive refinement for
apodized pupil Lyot coronagraph design
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ABSTRACT

Modern coronagraph design relies on advanced, large-scale optimization processes that require an ever increasing
amount of computational resources. In this paper, we restrict ourselves to the design of Apodized Pupil Lyot
Coronagraphs (APLCs). To produce APLC designs for future giant space telescopes, we require a fine sampling
for the apodizer to resolve all small features, such as segment gaps, in the telescope pupil. Additionally, we require
the coronagraph to operate in broadband light and be insensitive to small misalignments of the Lyot stop. For
future designs we want to include passive suppression of low-order aberrations and finite stellar diameters. The
memory requirements for such an optimization would exceed multiple terabytes for the problem matrix alone.

We therefore want to reduce the number of variables and constraints to minimize the size of the problem
matrix. We show how symmetries in the pupil and Lyot stop are expressed in the complete optimization problem,
and allow removal of both variables and constraints. Each mirror symmetry reduces the problem size by a factor
of four. Secondly, we introduce progressive refinement, which uses low-resolution optimizations as a prior for
higher resolutions. This lets us remove the majority of variables from the high-resolution optimization. Together
these two improvements require up to 256x less computer memory, with a corresponding speed increase. This
allows for greater exploration of the phase space of the focal-plane mask and Lyot-stop geometry, and easier
simulation of sensitivity to Lyot-stop misalignments. Moreover, apodizers can now be optimized at their native
manufactured resolution.
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1. INTRODUCTION

High contrast imaging aims to directly observe exoplanets and protoplanetary disks around their bright host stars.
Through indirect methods, such as radial velocity and transits, we know that most stars harbor a companion in
the habitable zone.1 Spectral characterization of these planets require a planet that frequently transits its bright
host star. Direct imaging on the other hand spatially separates the planet light from the star light and enables
detection and characterization. This allows for the detection of for example variability induced by the rotational
modulation of cloud and weather systems, and the glints off surface water with their polarization signal.

With ground-based extreme adaptive optics systems, such as the instruments VLT/SPHERE,2 Gemini/GPI3

and Subaru/SCExAO4 the direct imaging of exoplanets has become a reality. Future dedicated space-based
instrumentation, such as RST/CGI5 and LUVOIR6 extend this capability to deeper contrasts between host star
and the orbiting planet. These systems use advanced coronagraphs to suppress the overwhelming star light
and reveal the closeby weak planet light. A well known coronagraph is the Apodized Pupil Lyot Coronagraph
(APLC).7,8 This coronagraph combines an intricately designed apodizer mask in the pupil plane of the telescope
with a focal-plane mask and Lyot stop. Figure 1 shows the optical layout of the APLC and an example of light
propagating through its various masks.

This paper concerns the optimization of the masks. These masks must maximize planet throughput, while
still suppress the star light. This results in large-scale numerical optimization problems that challenge current
computational hardware. In particular, the large number of variables in these masks (typically ∼ 1 million
variables) and constraints (typically > 50, 000 or more constraints) require a large amount of computer memory
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Figure 1: The schematic layout of the APLC with an example for light propagation through the coronagraph. The label
B- means just before plane B, and B+ means just after plane B. All images are on logarithmic scales, with the B images
from 10−5 to 1, planes C from 10−3 to 1 and plane D from 10−9 to 10−4.

to store and operate the problem matrix, the linearized model of the coronagraphic system. Often, optimizations
are carried out on large-memory servers due to these computational requirements. This paper introduces two
main ways to reduce the optimization problem to more manageable levels and allow masks to be optimized at
much higher resolutions than before.

Section 2 builds the full optimization problem of an APLC apodizer step by step. Section 3 introduces the
removal of point symmetry and mirror symmetries from this mathematical problem. Section 4 introduces a new
way to progressively upscale low-resolution masks. Finally, Section 5 shows two examples of optimized masks at
high resolution. We conclude with Section 6.

2. THE FULL OPTIMIZATION PROBLEM

In this section, we will derive the general and complete optimization problem for a Lyot coronagraph with a
complex apodizer. Writing this optimization problem out explicitly makes it easier to identify the appropriate
symmetries later on.

The schematic layout of the apodized Lyot coronagraph is shown in Figure 1. We want to find the apodizer
in plane A, Φ(x), that provides the maximum throughput for an off-axis source, while simultaneously providing
at least a certain raw contrast for on-axis sources. We will use the Fraunhofer operator Pλ{·} as the operator for
propagation of an electric field from a pupil to a focal plane through a lens. With this operator we can compute



the coronagraphic image Ψcoro
λ,L and non-coronagraphic image Ψpsf

λ,L at wavelength λ and using Lyot stop L:

Ψcoro
λ,L = Pλ{P−1

λ {M(k) · Pλ{Φ(x) ·Π(x)}} · L(x)}, (1a)

Ψpsf
λ,L = Pλ{Φ(x) ·Π(x) · L(x)}, (1b)

where λ0 is the center wavelength of the light, M(k) is the focal-plane mask of the Lyot stage, and L(x) is the
Lyot-stop mask.

For our optimization problem we will maximize the peak of the non-coronagraphic image, while simultaneously
constraining the intensity of the coronagraphic image in the dark zone D to be smaller than the desired raw
contrast limit 10−c(k) relative to the peak intensity of the non-coronagraphic image. This whole optimization
problem reads as

maximize
Φ(x)

||Ψpsf
λ0,L

(0)||2 (2a)

subject to ||Ψcoro
λ0,L(k)||2 ≤ 10−c(k) · ||Ψpsf

λ0,L
(0)||2 ∀ k ∈ D (2b)

||Φ(x)||2 ≤ 1 ∀ x. (2c)

To clarify the nomenclature, we will refer to Eq. 2a and analogous equations as the objective function, Eq. 2b
and analogous equations as the focal-plane constraints, and Eq. 2c and analogous equations as the pupil-plane
constraints.

This optimization problem is still incomplete and moreover exhibits several problems. In the next few
subsections we will incrementally add more complexities and remove these remaining problems.

2.1 Extensions

2.1.1 Broadband light

Currently the contrast is only constrained at the center wavelength of our observing band. While we could
replace our focal-plane constraints by similar constraints on our broadband coronagraphic image, we prefer to
add constraints for each wavelength in our wavelength band independently. This ensures that we achieve the
required contrast independent of the spectrum of the star. The extended optimization problem now reads

maximize
Φ(x)

||Ψpsf
λ0,L

(0)||2 (3a)

subject to ||Ψcoro
λ,L (k)||2 ≤ 10−c(k) · ||Ψpsf

λ,L(0)||2 ∀ k ∈ D, (3b)

∀ λ ∈ [λmin, λmax]

||Φ(x)||2 ≤ 1 ∀ x, (3c)

where λmin and λmax are the minimum and maximum wavelength in our wavelength band. Note that the
monochromatic non-coronagraphic image is still used for the objective function.

2.1.2 Lyot stop robustness

We can extend the optimization problem to add Lyot robustness in a similar fashion. We now constrain the
contrast for a set of Lyot stops. This set of Lyot stops may contain many slightly shifted versions of the
nominal Lyot stop. In this way the APLC becomes robust against transverse translation of the Lyot-stop mask.
Additionally we can imagine adding the nominal Lyot stop at slightly different scales to become robust against
small magnification errors between the apodizer and Lyot-stop planes.



We will denote the nominal Lyot stop as L0(x) and the set of Lyot stops used for the focal-plane constraints
as {L1, L2, . . . LN}. The extended optimization problem now reads

maximize
Φ(x)

||Ψpsf
λ0,L0

(0)||2 (4a)

subject to ||Ψcoro
λ,L (k)||2 ≤ 10−c(k) · ||Ψpsf

λ,L(0)||2 ∀ k ∈ D, (4b)

∀ λ ∈ [λmin, λmax],

∀ L ∈ {L1, L2, . . . , LN}
||Φ(x)||2 ≤ 1 ∀ x. (4c)

2.1.3 Low-order robustness

Finally, we can add robustness against low-order aberrations in a similar fashion as well. For a set of modes
{a1(x), a2(x), . . . , aM (x)} with each a maximum amplitude corresponding to the maximum strength that we
want to be robust to. An aberrated coronagraphic image can be computed with

Ψcoro,aber
λ,L,α = Pλ{P−1

λ {M(k) · Pλ{Φ(x) ·Π(x) ·
∑
i

αiai(x)}} · L(x)}, (5)

This yields for the extended optimization problem

maximize
Φ(x)

||Ψpsf
λ0,L0

(0)||2 (6a)

subject to ||Ψcoro,aber
λ,L,α (k)||2 ≤ 10−c(k) · ||Ψpsf

λ,L(0)||2 ∀ k ∈ D, (6b)

∀ λ ∈ [λmin, λmax],

∀ L ∈ {L1, L2, . . . , LN},
∀ α ∈ [−1, 1]M

||Φ(x)||2 ≤ 1 ∀ x. (6c)

Again, we do not include the aberrated PSF in our objective function.

2.2 Convexification and speed up

As is, the current optimization problem is non-convex. This makes it difficult to find its global optimum. In
this subsection we convexify the problem and make two other modifications that significantly speed up the
optimization process.

2.2.1 Removal of the phase piston symmetry

The source of the non-convexity can be easily removed similar to other coronagraphs9–11 and previous methods
published for the APLC.8 The non-convexity in our optimization problem stems from the invariance under the
phase piston symmetry transformation S : Φ(x) → Φ′(x) = Φ(x) exp iβ, where β ∈ R is an arbitrary constant.
Therefore, if we have found a solution Φ̂(x) for the apodizer, then SΦ̂(x) = Φ̂(x) exp iβ is necessarily also a
solution of the optimization problem. This means that the solution to the problem is non-unique and the problem
therefore non-convex. We can remove this symmetry by maximizing the real part of the electric field at the peak
of the non-coronagraphic image, rather than its absolute value. The choice of maximizing the real part, instead
of any other linear combination of real and imaginary part is arbitrary. The optimization problem now reads:

maximize
Φ(x)

<{Ψpsf
λ0,L0

(0)} (7a)

subject to ||Ψcoro,aber
λ,L,α (k)||2 ≤ 10−c(k) · ||Ψpsf

λ,L(0)||2 ∀ k ∈ D, (7b)

∀ λ ∈ [λmin, λmax],

∀ L ∈ {L1, L2, . . . , LN},
∀ α ∈ [−1, 1]M

||Φ(x)||2 ≤ 1 ∀ x. (7c)



This optimization problem is now completely convex and therefore much easier to optimize. Any local optimum
that we now find is the global optimum of this problem.

2.2.2 Simplification of focal-plane constraints

There are a few things that we do to speed up the optimization even further. The first is to simplify the
focal-plane constraints. Rather than having the peak of the coronagraphic PSF appear on the right-hand side
(RHS) of Eq. 10b, we change the RHS to 10−c(k)Ipeak

λ,L,α,i, where Ipeak
λ,L,α,i is the peak of the non-coronagraphic

PSF evaluated for a certain fixed apodizer Φi(x), at a wavelength λ, with Lyot-stop L(x) and with aberration
coefficients α. The optimization problem now reads

maximize
Φ(x)

<{Ψpsf
λ0,L0

(0)} (8a)

subject to ||Ψcoro,aber
λ,L,α (k)||2 ≤ 10−c(k) · Ipeak

λ,L,α,i ∀ k ∈ D, (8b)

∀ λ ∈ [λmin, λmax],

∀ L ∈ {L1, L2, . . . , LN},
∀ α ∈ [−1, 1]M

||Φ(x)||2 ≤ 1 ∀ x. (8c)

The converged apodizer solution
Φ̂(x) = lim

i→∞
Φi(x), (9)

is now found by starting with Φ0(x) = 1, and letting Φi+1(x) be the solution of the above optimization problem.
After the first iteration, the apodizer solution still violates the contrast by a factor of two for realistic scenarios
for the APLC geometry. By the second iteration, our solution has practically converged. Usually we only perform
two iterations for optimizing an apodizer mask.

This counter-intuitive change yields an order of magnitude improvement in the computation time. While
the exact reason for this speed-up is unknown, it is likely to be caused by the internals of the used numerical
optimizer.

2.2.3 Linearized focal-plane constraints

By linearizing the focal-plane constraints, we can speed up the optimization even further. Linearization yields
sub-optimal results but the speed improvement is often worth the extremely minor throughput loss (typically
� 0.1%). There are several ways of linearization.10 Analogous to the optimization methods for apodizing phase
plate coronagraphs10 we choose a rotated inscribed square inside the original circular constraint. The reason
for this choice is as follows. In practice we see that the electric field is “pushed” towards the corners of this
square. In case the sides of the square lie perpendicular to real and imaginary axes, we produce an effect similar
to spontaneous symmetry breaking, where a solution that would otherwise be real, gets pushed towards either
positive or negative imaginary values. Therefore, we choose to have the corners of the square lie along the real
and imaginary axes. This situation is shown schematically in Figure 2.

The optimization problem now reads

maximize
Φ(x)

<{Ψpsf
λ0,L0

(0)} (10a)

subject to ±<{Ψcoro,aber
λ,L,α (k)} ± ={Ψcoro,aber

λ,L,α (k)} ≤
√

10−c(k) · Ipeak
λ,L,α,i ∀ k ∈ D, (10b)

∀ λ ∈ [λmin, λmax],

∀ L ∈ {L1, L2, . . . , LN},
∀ α ∈ [−1, 1]M

||Φ(x)||2 ≤ 1 ∀ x, (10c)

where the ± signs have to be taken over all combinations yielding four constraints for the four sides of the square.
Typically we see an order of magnitude reduction in the computation time during the optimization phase. Again,
the reason for this improvement is likely due to the internals of the numerical optimizer.
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Figure 2: The focal plane constraints in real and imaginary space (a) before linearization, and (b) after linearization.
Typically the electric field is “pushed” towards the positive real part of this space, so having a point here ensures that no
symmetry breaking occurs due to small numerical perturbations.

3. SYMMETRY REDUCTION

Removing symmetries in our optimization problem is a powerful way of reducing computation time and memory
usage. In general, symmetric optimization problems do not need to have a solution that is symmetric. Rather,
points in the parameter space that are invariant under the symmetry transformation (ie. Sx = x for some
symmetry transformation S), are critical points: either local optima or saddle points. This principle is now
known as the Purkiss principle.12 For convex optimization problems however, the global solution is guaranteed
to be symmetric. After all, if we have found the unique solution x̂ of the convex optimization problem, its
symmetric solution x̂′ = Sx̂ should also be solution. Since a convex optimization problem has a unique global
optimum, the found solution must be invariant under the symmetry transformation: x̂′ = Sx̂ = x̂.

Therefore, if our optimization problem exhibits a certain symmetry, we are able to remove variables and
constraints, as we know the solution has to be symmetric as well. In this paper we discuss two specific symmetries,
both leading to a reduction of the number of variables by a factor of two, and reduction of the number of
constraints by a factor of two as well. While identifying the variables that can be removed is often easy,
identification of the appropriate constraints can be harder and non-trivial. Each of these two symmetries therefore
reduces the size of the problem matrix, and therefore memory consumption by a factor of four. While current-
generation large-scale optimization methods do attempt to identify existing symmetries before starting the actual
solving process, they fail to (fully) find the symmetries that we will present. Therefore, in most cases, we do see
an improvement in computation time as well.

3.1 Point symmetry

Point symmetry occurs when our focal-plane mask M(k), dark zone D and contrast limit c(k) are point-
symmetric, and if our pupil and Lyot stops are real. That is,

M(−k) = M(k) ∀ k, (11a)

−k ∈ D ∀ k ∈ D, (11b)

c(−k) = c(k) ∀ k. (11c)

In this case, the optimization problem is invariant under complex conjugation of the apodizer Φ(x) → Φ∗(x),
where (·)∗ denotes complex conjugation. Therefore, our solution must be real:

Φ(x) = Φ∗(x) ∈ R. (12)

We can therefore remove all imaginary component from the apodizer mask Φ, removing half of all variables in
our optimization problem.

We can now find the result of this symmetry on our constraints. As our electric field at the apodizer plane
is now real, our electric field at the focal-plane mask will Hermitian. Due to the point-symmetric focal-plane
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Figure 3: Memory consumption over time during optimization of an apodizer for HiCAT with different symmetry reduc-
tions disabled or enabled. The optimization was performed for the HiCAT pupil at 486x486px resolution, on a server
with four Xeon Gold 6146’s for a total of 48 cores running at 3.2GHz and having 512GB of memory. Reduction of the
point symmetry reduces peak memory consumption by about two fold. Additionally removing all mirror symmetries gains
another factor ∼ 16×. All three optimizations yield solutions within the numerical accuracy of the optimizer.

mask, the electric field after the focal-plane mask will also be Hermitian. Therefore, the electric field at the
Lyot-stop plane will be real. As the Lyot-stop mask is real, the electric field after the Lyot-stop mask is also
real. Therefore, we know that the electric field of our coronagraphic image has to be Hermitian symmetric:

Ψcoro,aber
λ,L,α (k) = (Ψcoro,aber

λ,L,α (−k))∗. (13)

As our constraints are symmetric under complex conjugation, we only need to add focal-plane constraints for
one side of the dark zone. The electric field on the other side will automatically satisfy the focal-plane constraint
without explicit inclusion. For simplicity, we often remove either the right or top half of the dark zone. The
choice between these two is determined by the symmetry in the next section.

Note that we have not set any conditions on the Lyot stop or telescope pupil (other than that they are real).
This means that this symmetry is applicable to all APLC designs that we want to design.

In Figure 3 we show the memory consumption over time during the optimization of masks for the HiCAT
testbed. We can see about a two-fold reduction in peak memory consumption when comparing the memory trace
without any symmetry reduction and the trace with only point symmetry removed. While we would expect a
four-fold reduction, the optimization with no symmetry reduction already removes the imaginary component of
the apodizer mask as we are optimizing an APLC mask, which is required to be real. Therefore, we only see the
two-fold reduction from the halving of the dark zone.

3.2 Mirror symmetry

Mirror symmetries occur our pupil, focal-plane mask, Lyot-stop masks and dark zone exhibit mirror symmetries.
Here we need to make the distinction between single and double mirror symmetric problems.

3.2.1 Single mirror symmetry

Without loss of generality, we can choose to have mirror symmetry along the x axis. Mirror symmetries along
other lines can be handled by manually rotating the pupil and Lyot-stop masks beforehand. For our problem to



Point symmetry
removed?

Mirror symmetries
removed?

# variables # constraints
Reduction in

memory consumption

7 7 141,716 31,872 0%
3 7 141,716 15,936 ∼ 50%
3 3 35,429 3984 ∼ 97%

Table 1: Number of variables and constraints for each of the optimizations shown in Figure 3. Removing point symmetry
from the optimization problem improves memory consumption by 2×, while additionally removing a two-fold mirror
symmetry improves memory consumption by 32×.

exhibit mirror symmetry along x, we need to have a pupil and set of Lyot-stop masks that are mirror symmetric
along x, and a focal-plane mask and dark zone that are mirror symmetric along y. Mathematically,

Π(−x, y) = Π(x, y) ∀ x, y (14a)

M(k,−l) = M(k, l) ∀ k, l (14b)

L0(−x, y) = L0(x, y) ∀ x, y (14c)

{L1(−x, y), L2(−x, y), . . . , LN (−x, y)} = {L1(x, y), L2(x, y), . . . , LN (x, y)} ∀ x, y, (14d)

(k,−l) ∈ D ∀ (k, l) ∈ D (14e)

and analogous for mirror symmetry in y. Note that the mirror symmetry for the set of Lyot stops is taken along
the entire set. This means that individual Lyot stops are allowed to be asymmetric, as long as their counterpart
is also an element of the set of Lyot stops. For example, while a Lyot stop that is slightly shifted towards positive
x is not mirror-symmetric along x anymore, even if the nominal Lyot stop was mirror symmetric, as long as
version that is shifted towards negative x is also an element of the set.

In this case, the optimization problem is invariant under Hermitian conjugation of the apodizer along the
x-axis:

Φ(x, y) = Φ∗(−x, y) ∀ x, y. (15)

This means that we can remove half of the variables for the apodizer mask.

Again, identifying which constraints to remove is non-trivial. For a mirror symmetry along x, the electric
field at the focal-plane mask will be Hermitian along the y-axis:

ΨB(x, y) = Ψ∗B(x,−y). (16)

This is easiest to see when splitting the two-dimensional Fourier transform into two one-dimensional Fourier
transforms, one along x, and one along y. For mirror symmetry along x, we first apply the one-dimensional
Fourier transform along x, yielding a real function. Then, applying the one-dimensional Fourier transform along
y, yields the one-dimensional Hermitian symmetry as in Eq. 16. As the focal-plane mask is real and mirror
symmetric in y, this one-dimensional Hermitian symmetry is retained. Therefore, the electric field at the Lyot
stop is again Hermitian symmetric along x.

Now for the Lyot stop we have two options:

1. The Lyot stop itself is mirror symmetric along x. In this case mirror symmetry is retained, and the field
in the final focal plane will again exhibit one-dimensional Hermitian symmetry along y. Therefore, we can
choose to omit half of the focal-plane constraints, either the top or the bottom half. Note that if point
symmetry also applies, as is often the case, we are free to choose any quarter of the dark zone. This is
because we are free to choose either horizontal half for the point symmetry reduction. If our problem
exhibits mirror symmetry along y instead of x, then we are free to choose the top half for the point
symmetry, and the left half for the mirror symmetry. In both cases, we are left with a quarter of the dark
zone, which may seem counter intuitive at first.



2. The Lyot stop itself is not mirror symmetric along x, but the set of Lyot stops contains its symmetric
counterpart. In this case, the electric field after the Lyot stop will not be symmetric anymore, along with
the electric field at the final focal plane. However, between the asymmetric Lyot stop and its counterpart,
we can see that this amounts to a reflection along x. Therefore, in the final focal plane, the transformation
from using the asymmetric Lyot stop to its counterpart, is equal to complex conjugation of the field and
mirror reflection along y. Therefore, as our focal-plane constraints are symmetric in real and imaginary
part, we can omit one of the Lyot stops completely.

Therefore, in both cases we remove half of the focal-plane constraints. Along with the removal of variables,
a single mirror symmetry yields a four-fold reduction in memory consumption.

3.2.2 Two-fold mirror symmetry

For problems that exhibit two-fold mirror symmetry, the situation becomes slightly different. The conditions for
this case are

Π(−x, y) = Π(x,−y) = Π(x, y) ∀ x, y (17a)

M(−k, l) = M(k,−l) = M(k, l) ∀ k, l (17b)

L0(−x, y) = L0(x,−y) = L0(x, y) ∀ x, y (17c)

{L1(−x, y), L2(−x, y), . . . , LN (−x, y)} = {L1(x,−y), L2(x,−y), . . . , LN (x,−y)}
= {L1(x, y), L2(x, y), . . . , LN (x, y)} ∀ x, y, (17d)

(−k, l) ∈ D ∀ (k, l) ∈ D (17e)

(k,−l) ∈ D ∀ (k, l) ∈ D. (17f)

Again, the Lyot-stop masks have to be symmetric as a set and not necessarily individually. Under these condi-
tions, the problem is invariant under either Hermitian conjugation of the apodizer along x and y, yielding

Φ(x, y) = Φ∗(−x,−y) = Φ∗(x,−y) = Φ(−x,−y) ∀ x, y. (18)

This yields a removal of 3⁄4 of all variables in the apodizer mask.

Again, identifying which constraints can be omitted is non-trivial. The electric field at the focal-plane mask
will be two-fold one-dimensional Hermitian. Again, this is easier to see after splitting the two-dimensional Fourier
transforms into two one-dimensional Fourier transforms. After the first one-dimensional Fourier transform along
x, the field will be real, and the second one-dimensional Fourier transform will make it Hermitian along y.
Alternatively, we could perform the one-dimensional Fourier transform along y first, and then along x. This yields
a one-dimensional Hermitian function along x. Therefore, the final function must be two-fold one-dimensional
Hermitian. As the focal-plane mask is real and two-fold mirror symmetric, it does not affect this symmetry.
Therefore, the electric field at the Lyot stop is again two-fold one-dimensional Hermitian.

We split up the Lyot stop into three cases:

1. The Lyot stop itself is two-fold mirror symmetric. In this case, the final focal plane will be two-fold one-
dimensional Hermitian as well, and we can omit 3⁄4 of the dark zone. Note that if point symmetry also
applies, the field will be purely real as well, and we only need to add the constraints for the real part for a
quarter of the dark zone.

2. The Lyot stop itself is only mirror symmetric along one axis, but its counterpart for the other mirror
symmetry is an element of the set of Lyot stops. Let’s assume that Lyot stop itself is mirror symmetric
in y and that its counterpart is its mirror reflection along x. In this case, analogous to the case for single
mirror symmetry, we can retrieve the field for the other Lyot stop, we need to take the Hermitian conjugate
along the y axis. Therefore, As our focal-plane constraints are mirror symmetric, we can safely omit one
of the Lyot stops completely, and furthermore use only half of the dark zone. Note that we still need to
constrain both real and imaginary components. Note that if point symmetry also applies, we are free to
only constrain a quarter of the dark zone.



3. The Lyot stop itself is not mirror symmetric over either of the two axes, but its three counterparts are all
elements of the set of Lyot stops. In this case, analogous to the case above, we can remove the three Lyot
stops from the optimization problem. We however do need to constrain both real and imaginary parts for
the full dark zone. Note that if point symmetry also applies, we can still remove any half of the dark zone
here.

The red line in Figure 3 depicts the memory consumption over time for a two-fold mirror symmetric problem
with the HiCAT aperture. We can see that we gain another ∼ 4 × 4 =∼ 16× reduction in peak memory
consumption compared to the purely point-symmetric case. In total, we achieve an improvement of ∼ 4×4×2 =∼
32× reduction in memory consumption.

4. PROGRESSIVE REFINEMENT

4.1 General idea

It is well known that solution of APLC apodizers are binary, consisting of patches of zero and one transmission.8

When performing the same optimization at different resolutions, we notice that the patches do not move or
change shape, and that just the edges get more defined and sharper as the resolution increases. Additionally, low
resolution optimizations that resolve individual patches are useful for probing the parameter space: even though
the mask itself may not have a sufficiently high resolution to be manufactured, it still gives realistic values for
coronagraphic throughput. Therefore, these low resolution optimizations are often used to perform parameter
studies for determining the best hyperparameters. Think here for example of the focal-plane mask radius, the
inner and outer diameter of the Lyot stop and thickness of the spiders in the Lyot stop. For probing the full
parameter space we would like to perform thousands of optimizations, which is only possible at low resolutions.

Here we aim to use low-resolution optimization for another purpose. As each low-resolution mask already
contains roughly the correct size and shape for each of the patches in the apodizer, we would like to use this
information as a prior for higher resolution optimizations. The middle of these patches are unlikely to change
across different resolutions. Therefore we can imagine fixing these pixels in a high resolution optimization and
only optimize pixels at the edge of the patches. This type of technique is well known to the computer graphics
community as “progressive refinement”. Progressive refinement starts off with a low resolution estimate of an
image, providing the user with a coarse estimation of the final image. This is useful for quick checks and can
allow early cancellation of the computation if required. This coarse image is then gradually improved upon as
more data becomes available or is computed.

As the number of pixels on the edge is much smaller than the number of pixels in the whole apodizer, we
can in this way remove most of the variables from high resolution optimizations, while only having to perform a
comparatively quick low-resolution optimization beforehand. Furthermore, the number of pixels on the edges of
patches grows linearly with the resolution of the apodizer rather than quadratically. Therefore the improvement
in memory consumption will become better then larger the apodizer is that we want to optimize.

4.2 Example

In Figure 4 we show this technique in action. To show the details in the optimized apodizer, we only show
a zoomed-in version of the full mask. We start off at a scale of 486 × 486px. As we have not performed any
optimization, every pixel needs to be optimized at this resolution. Pixels that are optimized are shown in red,
while pixels that are not optimized are shown either in black or white depending on the fixed value at the current
resolution. At this resolution we retrieve the mask shown on the bottom left.

Upscaling this mask to twice its original resolution (972 × 972px), we only need to optimize pixels that lay
on the edge of patches. We use an edge detection algorithm to automatically identify the edges, and use binary
dilation to thicken the edges to 3-5 pixels wide. This gives enough room for edges to move slightly, while still
not degrading performance for no reason. Additionally we include pixels that were not sufficiently black or white
in the low-resolution optimization. These pixels often indicate unresolved structure in the apodizer that might
become resolved at higher resolutions. This is often the case at the edges of the Lyot stop projected onto the
apodizer, in cases where we include Lyot robustness. The result of this optimization with prior is shown in the
bottom middle. Finally, this process can be repeated a third time, upscaling to a resolution of 1944 × 1944px,
with the results in the right column.
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Figure 4: Example of the optimized pixels and the resulting masks at different resolutions with the progressive refinement
algorithm. For the top row: red indicates that a pixel is optimized at that resolution, and white/black indicates the value
for pixels that are not optimized.

4.3 Analysis

Figure 5 shows the memory consumption over time for the full optimization, starting at 1⁄4-th scale to full
resolution. The graph is annotated to show different stages of the optimization process, starting with calculation
of the problem matrix for each of the three wavelengths at 1⁄4-th scale, then optimizing the apodizer at that
scale, and then doing the same for 1⁄2 scale and full resolution. The optimization ran on a laptop equipped with
a Core i7 9750H with six cores running at 2.6GHz.

Calculation of the problem matrix is performed using propagations at the full, final resolution, using super-
pixels of 2n × 2npx depending on the current scale. This is a very conservative approach, which makes sure
that superpixels that intersect the edge of the telescope pupil are handled in the same way throughout the op-
timization process. This conservative approach is the reason for the large amount of time spent on the problem
matrix calculation compared to Figure 3, where the two-fold symmetric (red) line depicts an optimization of the
same complexity, albeit on different, faster hardware. In the future, we will experiment with performing this
calculation at the lower resolution.

Table 2 shows the number of variables and constraints at each of the stages of the progressive refinement
algorithm. We can see that the progressive refinement algorithm is able to remove ∼ 90% of all variables at
the 2 × 2 scale, and ∼ 95% at the final resolution. Note that from 2 × 2 to 1 × 1 the number of variables in
the progressive algorithm only grew by a factor of ∼ 2, compared to ∼ 4× for the non-progressive algorithm.
This illustrates that the progressive algorithm scales linearly with resolution rather than quadratic. The final
optimization stage achieved a peak memory consumption of∼ 10GB which would have required∼ 200GB without
progressive refinement. This would have necessitated the use of a high-memory server instance. Additionally,
these memory figures already include the gains made in Section 3.

In some cases we have seen that the optimizer is unable to find a feasible solution. This means that we
were too aggressive with the removal of variables, and that with the available pixels the optimizer was unable
to achieve the required contrast limit. In these cases we can either restart the progressive refinement and allow
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HiCAT apodizer, 1944x1944px on a Core i7 9750H, 6 cores @ 2.6GHz

Figure 5: Memory consumption over time during the optimization of Fig. 4. The different phases during the optimization
process are annotated. In total, four numerical optimization problems were solved. The first two are around 11.5hours,
which includes an optimization for peak throughput convergence. The two other occur at ∼ 16.5hours and 24.5hours.

Scale
# variables

(progressive)
# variables

(non-progressive)
# constraints

Reduction in
memory consumption

4× 4 35,429 35,429 3,984 0%
2× 2 14,213 141,716 3,984 ∼ 90%
1× 1 25,691 566,864 3,984 ∼ 95%

Table 2: Number of variables and constraints at each scale during the progressive refinement algorithm ran for Figure 5.
At the lowest resolution 4×4 no improvement is memory consumption is observed as all pixels are optimized at the initial
scale. The number of variables is listed for both progressive and non-progressive optimization. For the 2 × 2 scale we are
able to remove ∼ 90% of all variables, and ∼ 95% at the final full resolution.

more pixels to be optimized along the edges, broadening the band of pixels that are allowed to be optimized. If
this also fails, which we have seen in some rare cases, the optimization must be restarted with the current scale
as the initial scale, ie. allowing all pixels to partake in the optimization.

5. CASE STUDIES

We developed a code that implements the reductions outlined in the previous sections. The code automatically
determines which symmetries are applicable to the current problem, and removes the appropriate constraints
and variables from the optimization problem. Simultaneously, it can perform progressive refinement on the
found solutions, iteratively upscaling lower-resolution solutions. The simulation of all propagations is done with
HCIPy, an open-source object-oriented framework written in Python for performing end-to-end simulations of
high-contrast imaging instruments.13 The Lyot coronagraph in HCIPy uses the semi-analytical method.14 For
efficiently reasons, the code only propagates light to the part of the dark zone that is used for the constraints.
The numerical optimization itself is performed by Gurobi.15

The code contains a survey mode that simplifies running large parameter studies. This includes logging of all
relevant information, and producing a paper trail for the whole optimization so that the exact optimization can
be repeated and/or checked in the future. Additionally, the code automatically produces a PDF-file of relevant
plots so that a design can be evaluated at first glace immediately after optimization.



Figure 6: The optimized mask for the HiCAT testbed. These masks were optimized at the manufacturing resolution and
contain a ±0.3% robustness to Lyot stop translations. This translation range can clearly be seen as the optimizer adds
high frequency features in the apodizer design to accommodate these different Lyot stop translations.

The code was used to produce designs for HiCAT16 and LUVOIR-A.6 This section will highlight some of the
optimized designs.

5.1 HiCAT

The HiCAT pupil is two-fold mirror symmetric and therefore takes the greatest advantage of the improvements
shown in this paper. Without the improvements in this paper, this optimization would have required an estimated
63TB of memory. In Figure 6 we show the optimized design, optimized at the manufactured resolution of
1944× 1944px. Lyot robustness is included in the optimizations with a set of nine Lyot stops in a three-by-three
grid centered around the nominal position.

The improved speed of the optimizer allows for better comparison of different strategies of adding robustness to
Lyot stop translations. Figure 7 shows the Lyot sensitivity for a mask with and without built-in Lyot robustness.
These figures show the coronagraphic image for different translations of the Lyot stop mask. Clearly, the design
that is made robust against Lyot stop translations is more capable of handling these small perturbations. The
optimization is performed with a set of nine Lyot stops, which are still clearly visible in the grid of Lyot stop
translations as overall darker images.

5.2 LUVOIR-A

The LUVOIR-A pupil is only mirror symmetric along x and our optimizations are therefore performed at a
reduced resolution of 1024 × 1024px. The current concept for the APLC in LUVOIR-A calls for three masks
with differently sized focal-plane masks and outer working angles. These masks are shown in Figure 8. While
the apodizer paired with the smallest focal-plane mask can be used to look for planets very close in, it does not
have the best coronagraphic throughput when this capability is not required. Having a larger focal-plane mask
allows us to improve coronagraphic throughput to aid in efficient characterization of exoplanets in wider orbits.

6. CONCLUSIONS

In this paper we described two ways to reduce the memory consumption when optimizing APLC apodizer
masks. The first exploited symmetries in the underlying problem, specifically point symmetry and the two
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Figure 7: Two analysis plots for two different HiCAT apodizer designs, one without and one with added robustness against
Lyot stop translations. The colorbar for all images are the same, stretching in logarithmic scale from 10−4 to 10−9.
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Figure 8: The three masks optimized for the LUVOIR-A telescope pupil, with a small, medium and large inner working
angle to provide the best mask for different scenarios.



mirror symmetries. The second way exploited the binary structure of the masks to progressively upscale low-
resolutions at minimal cost using progressive refinement.

We showed two examples of these reductions in action, optimizing apodizer masks for the HiCAT testbed
at the native manufacturing resolution, and for the LUVOIR-A telescope. The HiCAT apodizer mask would
have required an estimated 63TB of memory without the improvements in this paper. The LUVOIR-A apodizer
with the largest outer working angle would have required an estimated 22TB of memory. This shows that much
larger and more intricate masks can be optimized with these improvements, allowing for better exploration of
the parameter space and easier optimization at native manufacturing resolutions.
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